開關(guān)電源設(shè)計原型的分析模擬和實驗
發(fā)布時間:2021-02-07 來源:Christophe Basso 責(zé)任編輯:wenwei
【導(dǎo)讀】環(huán)路控制是開關(guān)電源設(shè)計的一個重要部分。然而,由于各種原因,在選定主要元件后,研究往往在項目結(jié)束時被拋到了腦后。通過簡單的試驗和錯誤分析,我們有時候會覺得,如果設(shè)計能夠在示波器上實現(xiàn)可接受的瞬態(tài)響應(yīng),那么該設(shè)計便已準(zhǔn)備好用于生產(chǎn),但這種想法非常不明智,而且可能導(dǎo)致高昂代價。這是因為,轉(zhuǎn)換器中使用的大多數(shù)元件都會受到雜散元件的影響,而雜散元件的廣泛影響在原型制作階段是隱藏的。
如果未在模擬和環(huán)路測量的基礎(chǔ)上進行徹底分析,您就不會知道相位和增益裕度是什么樣的,以及它們有多可靠。這種設(shè)計松散的轉(zhuǎn)換器很可能在生產(chǎn)中或在現(xiàn)場上電后不久就會出現(xiàn)故障。為避免出現(xiàn)這種情況,本文綜述了目前可供選擇的一些工具,讓您在開始生產(chǎn)之前能夠計算、模擬和測量您的原型,從而確保生產(chǎn)工作安全順利。
I. 簡介
在開關(guān)轉(zhuǎn)換器中,功率級的輸出由電壓變量控制。本文將這類電壓變量記為Verr或Vc,它們由負責(zé)將轉(zhuǎn)換器輸出維持在規(guī)定范圍內(nèi)的補償模塊提供。對于以固定開關(guān)頻率Fsw運行的轉(zhuǎn)換器,控制變量為占空比D。但情況并非總是如此,有些轉(zhuǎn)換器由可變頻率(例如LLC等諧振轉(zhuǎn)換器)或者可變導(dǎo)通或關(guān)斷時間控制。本文將主要討論以固定開關(guān)頻率運行的轉(zhuǎn)換器類型。
誤差電壓Verr可以直接控制占空比,我們這里討論的是電壓模式控制(VM)或直接占空比控制。另一方面,在電流模式控制(CM)中,控制電壓Vc通過感應(yīng)電阻按周期固定電感峰值電流,并間接設(shè)置工作占空比。然而,當(dāng)使用示波器顯示在VM或CM下運行的轉(zhuǎn)換器波形時,您無法判斷轉(zhuǎn)換器是在電流模式控制還是電壓模式控制下運行。這是因為這兩種結(jié)構(gòu)的功率級非常相似,只有詳細闡述占空比的方式發(fā)生了改變:降壓轉(zhuǎn)換器采用10V電源為負載提供5V電壓時,無論該系統(tǒng)在電壓模式控制還是在電流模式控制下運行,該轉(zhuǎn)換器在理論上都將具有50%占空比。
作為電源設(shè)計人員,我們的目標(biāo)是構(gòu)建出穩(wěn)定的轉(zhuǎn)換器,既能夠提供精確調(diào)節(jié)的電壓(或電流),而又對工作條件(輸入源變化、環(huán)境溫度變化、不同負載條件等)不敏感。除了這些實踐要求,設(shè)計人員還必須確保其轉(zhuǎn)換器在整個使用壽命期間都能保持穩(wěn)定和正常運行。您還必須考慮到自然生產(chǎn)誤差或因老化而導(dǎo)致的元件性能下降。現(xiàn)在還不錯的裕度在5年后會變得如何?如果我的買家朋友向我展示工廠選擇的更實惠的新型電容,我對自己的選擇有多大信心?“嗨,Anaximander,如果輸出電容選擇B品牌而不是當(dāng)前儲存的A品牌,您能確認新一批100萬件適配器會工作正常嗎?”您能大膽地回答這個問題嗎?如果您做足了功課,并仔細研究了寄生電容對交越頻率和相位裕度等的影響,那么您確實可以。但是如果您沒有那樣做,而只是在實驗室內(nèi)轉(zhuǎn)動補償器的R和C旋鈕來觀察了階躍響應(yīng),那么您可以擦擦額頭上的汗珠,未來幾天您肯定都要加班到很晚來糾正錯誤,避免出現(xiàn)災(zāi)難性結(jié)果。
要避免這種困境,一種方法就是按章辦事,并從功率級響應(yīng)開始。這是唯一的起點:在考慮可能的控制策略之前,您需要先表征您要控制的系統(tǒng)。您需要的是確定輸出變量對控制輸入的變化有何響應(yīng)。換言之,您需要待構(gòu)建降壓或升壓轉(zhuǎn)換器的控制到輸出傳遞函數(shù):Vout會對Verr中的指定激勵做出怎樣的動態(tài)響應(yīng)(圖 1)。也就是說,設(shè)備會做出什么響應(yīng)?
圖 1: 我們想要功率級動態(tài)響應(yīng)。
拿到傳遞函數(shù)幅相圖后,您就可以考慮補償策略(即在不同的頻率位置放置極點、零點和增益(或衰減))來滿足您的設(shè)計目標(biāo)。這就是圖 2中所示的示例。D1
構(gòu)建補償器時,有幾種方法可循,如圖 3所示。經(jīng)典方法在文獻中存在大量描述,該方法采用運算放大器構(gòu)建濾波器,因為補償器就是一個有源濾波器。然而,業(yè)內(nèi)主要采用TL431,您可以在當(dāng)今市場上銷售的絕大多數(shù)適配器中發(fā)現(xiàn)其痕跡。我承認,就簡單性或成本而言,它是其他方法無法超越的:只需幾美分就可以得到一個具有適度高開環(huán)增益(55 dB)和2.5 V精確基準(zhǔn)電壓的運算放大器,而且TLV版本的Vref低至1.24 V。該部件提供多種不同的封裝,一些版本可以接受高達36 V的電壓。然而,選擇該器件會帶來與快慢通道相關(guān)的其它問題。
圖 2: 您通過補償器插入極點和零點并形成所需的頻率響應(yīng)。
此外,還可以選擇使用跨導(dǎo)運算放大器(OTA)來達到補償目的。集成電路設(shè)計人員喜歡使用OTA,因為它們占用的硅芯片區(qū)域要少于對應(yīng)的運算放大器。我個人不太喜歡OTA,因為基于運算放大器的補償器提供虛擬接地,而基于OTA的則沒有。此外,電阻分壓比也會影響極點/零點布局。
圖 3:設(shè)計補償器時有多種有源元件可供選擇。
OTA在功率因數(shù)校正(PFC)應(yīng)用中比較受歡迎,非常適合用于實現(xiàn)具有適度相位邊限提升的補償器。如果您打算將其用于需要實現(xiàn)高相位邊限提升的應(yīng)用,則可能會達到Vout/Vref比例的上限。
相位邊限提升是為滿足相位裕度目標(biāo)而需要補償器補償?shù)念~外相位量,通常為大于45°的數(shù)字。通過圖 4,您會發(fā)現(xiàn)功率級在某些選定頻率f1和f2下具有90°或145°的相位滯后。如果使用具有270°固定滯后的標(biāo)準(zhǔn)積分器來閉合環(huán)路,則這兩個因素在f1頻率下的滯后之和為-360°或0°:信號在注入點同相返回,并且滿足持續(xù)振蕩的條件。這并不是您想要的,除非您的目標(biāo)就是構(gòu)建一個振蕩器。現(xiàn)在,如果您在f2頻率下強制交越,則相位裕度為負數(shù),也就是說閉環(huán)極點位于右半平面上:系統(tǒng)不穩(wěn)定。您可以通過在f1或f2頻率處實現(xiàn)相位邊限提升來解決這個問題。通過將極點和零點放在補償器中,您就可以調(diào)整其相位響應(yīng),使其不再固定為-270°,而是更低的值。當(dāng)與設(shè)備響應(yīng)相結(jié)合時,總參數(shù)或相位現(xiàn)在將小于-360°,從而獲得實現(xiàn)穩(wěn)定所需的相位裕度。
圖 4:設(shè)備相位與補償器相位相加應(yīng)使得總相位滯后低于-360°。
我們可以確定三種類型的補償器,稱為類型1、2和3,如圖5中所示。第1種類型包含原點極點:它是以下傳遞函數(shù)所表示的積分器:
無相位邊限提升,并且相位為反相運算放大器結(jié)構(gòu)的相位(-180°)加上原點極點的相位(-90°),因此最終參數(shù)為-270°或90°。
第2種類型常見于所需相位邊限提升低于90°的電流模式控制設(shè)計。它包含原點極點以及一個極點和一個零點。理論上,原點極點(s=0)可以消除靜態(tài)誤差(目標(biāo)直流電源與環(huán)路閉合時的直流電源之間的偏差)。這種極點存在于絕大多數(shù)的補償器中,但也有些技術(shù)(如所謂的輸出電阻成形)會故意忽略這種極點并接受一點小偏差。
圖5 :您可以使用這三種配置實現(xiàn)補償策略。
在第2種類型中,零點位于極點之前,會使相位隨著頻率升高而增加。極點在稍后出現(xiàn),然后相位邊限提升返回至零點。通過擴散零點和極點,您可以根據(jù)需要調(diào)整相位邊限提升,最高可達90°。請注意,如果將極點和零點重合,補償器又會變成第1種類型,相位邊限提升為0°。
該結(jié)構(gòu)中描述的傳遞函數(shù)如下所示:
您可以看到,分子中存在反向零點,因此可通過具有增益維度的G0進行因式分解。
最后,第3種類型的補償器在第2種類型的基礎(chǔ)上增加了另一對極點-零點,并且可將相位提升至最高180°。這可以通過下述表達式進行描述:
如果我們現(xiàn)在對G(s)使用第3種類型的電路,而不是圖4示例中的單純積分器,并將相位提升125°,那么目前的總環(huán)路相位會偏離0°或-360°,并且我們會具有70°的裕度(圖 6)。
根據(jù)功率級滯后和所需的相位裕度jm,我們可以推導(dǎo)出一個與所需相位邊限提升量相關(guān)的公式。我們都知道,反相運算放大器和原點上的極點會導(dǎo)致270°滯后,再加上以選定交越頻率fc表征的功率級相位。這些數(shù)字相加,結(jié)果應(yīng)該就與-360°限值相差相位裕量。因此,我們可以這樣寫:
通過求解提升值,我們可以得到:
根據(jù)這個數(shù)字,我們可以推斷出要使用的補償器類型:
1. 無需提升:第1種類型。適用于不連續(xù)傳導(dǎo)模式轉(zhuǎn)換器,并且從某種程度上說,也適用于PFC級。
2. 最高90°:第2種類型。常用于電流模式控制轉(zhuǎn)換器(例如,反激和PFC級)。
3. 超過90°但低于180°:第3種類型。通常用于在連續(xù)傳導(dǎo)模式(CCM)下運行的電壓模式控制轉(zhuǎn)換器。
圖 6:相位裕度目前為70°,因此考慮使用第3種類型的補償器。
【編者按】:本文是開關(guān)電源設(shè)計技術(shù)論文《Analysis, Simulation and Experiments Pave the Road to Success》的第一部分,第二和第三部分將陸續(xù)在本刊發(fā)表,敬請關(guān)注。
作者:Christophe Basso
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
特別推薦
- 單個IC也能構(gòu)建緊湊、高效的雙極性穩(wěn)壓器
- 了解負電壓的概念
- 充電器 IC 中的動態(tài)電源路徑管理
- 集成開/關(guān)控制器如何提升系統(tǒng)能效
- 柵極驅(qū)動器選得好,SiC MOSFET高效又安全
- 交流電源系統(tǒng)中的過流保護
- 安全設(shè)計降壓前置穩(wěn)壓器,為汽車電源保駕護航!
技術(shù)文章更多>>
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗——AMTS 2025觀眾預(yù)登記開啟!
- 照亮的未來:探索LED調(diào)光電源方案
- 想要BMS高效穩(wěn)定?電流感應(yīng)電阻解決方案了解下!
- 突破傳統(tǒng)局限,泰克助力芯朋微理想二極管更安全、更高效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開關(guān)
個人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器
功率器件
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)