- SCLK: Serial Clock (output from master);
- MOSI; SIMO: Master Output, Slave Input(output from master);
- MISO; SOMI: Master Input, Slave Output(output from slave);
- SS: Slave Select (active low, outputfrom master).
嵌入式工程師常用的IIC和SPI總線協(xié)議,今天來說透!
發(fā)布時(shí)間:2018-01-08 責(zé)任編輯:wenwei
【導(dǎo)讀】現(xiàn)今,在低端數(shù)字通信應(yīng)用領(lǐng)域,我們隨處可見IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是這兩種通信協(xié)議非常適合近距離低速芯片間通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市場(chǎng)需求制定了這兩種標(biāo)準(zhǔn)通信協(xié)議。
IIC 開發(fā)于1982年,當(dāng)時(shí)是為了給電視機(jī)內(nèi)的CPU和外圍芯片提供更簡(jiǎn)易的互聯(lián)方式。電視機(jī)是最早的嵌入式系統(tǒng)之一,而最初的嵌入系統(tǒng)是使用內(nèi)存映射(memory-mapped I/O)的方式來互聯(lián)微控制器和外圍設(shè)備的。要實(shí)現(xiàn)內(nèi)存映射,設(shè)備必須并聯(lián)入微控制器的數(shù)據(jù)線和地址線,這種方式在連接多個(gè)外設(shè)時(shí)需大量線路和額外地址解碼芯片,很不方便并且成本高。
為了節(jié)省微控制器的引腳和和額外的邏輯芯片,使印刷電路板更簡(jiǎn)單,成本更低,位于荷蘭的Philips實(shí)驗(yàn)室開發(fā)了 ‘Inter-Integrated Circuit’,IIC 或 IIC ,一種只使用二根線接連所有外圍芯片的總線協(xié)議。最初的標(biāo)準(zhǔn)定義總線速度為100kbps。經(jīng)歷幾次修訂,主要是1995年的400kbps,1998的3.4Mbps。
有跡象表明,SPI總線首次推出是在1979年,Motorola公司將SPI總線集成在他們第一支改自68000微處理器的微控制器芯片上。SPI總線是微控制器四線的外部總線(相對(duì)于內(nèi)部總線)。與IIC不同,SPI沒有明文標(biāo)準(zhǔn),只是一種事實(shí)標(biāo)準(zhǔn),對(duì)通信操作的實(shí)現(xiàn)只作一般的抽象描述,芯片廠商與驅(qū)動(dòng)開發(fā)者通過data sheets和application notes溝通實(shí)現(xiàn)上的細(xì)節(jié)。
SPI
對(duì)于有經(jīng)驗(yàn)的數(shù)字電子工程師來說,用SPI互聯(lián)兩支數(shù)字設(shè)備是相當(dāng)直觀的。SPI是種四根信號(hào)線協(xié)議(如圖):
SPI是[單主設(shè)備( single-master )]通信協(xié)議,這意味著總線中的只有一支中心設(shè)備能發(fā)起通信。當(dāng)SPI主設(shè)備想讀/寫[從設(shè)備]時(shí),它首先拉低[從設(shè)備]對(duì)應(yīng)的SS線(SS是低電平有效),接著開始發(fā)送工作脈沖到時(shí)鐘線上,在相應(yīng)的脈沖時(shí)間上,[主設(shè)備]把信號(hào)發(fā)到MOSI實(shí)現(xiàn)“寫”,同時(shí)可對(duì)MISO采樣而實(shí)現(xiàn)“讀”,如下圖:
SPI有四種操作模式——模式0、模式1、模式2和模式3,它們的區(qū)別是定義了在時(shí)鐘脈沖的哪條邊沿轉(zhuǎn)換(toggles)輸出信號(hào),哪條邊沿采樣輸入信號(hào),還有時(shí)鐘脈沖的穩(wěn)定電平值(就是時(shí)鐘信號(hào)無效時(shí)是高還是低)。每種模式由一對(duì)參數(shù)刻畫,它們稱為時(shí)鐘極(clock polarity)CPOL與時(shí)鐘期(clock phase)CPHA。
[主從設(shè)備]必須使用相同的工作參數(shù)——SCLK、CPOL 和 CPHA,才能正常工作。如果有多個(gè)[從設(shè)備],并且它們使用了不同的工作參數(shù),那么[主設(shè)備]必須在讀寫不同[從設(shè)備]間重新配置這些參數(shù)。以上SPI總線協(xié)議的主要內(nèi)容。SPI不規(guī)定最大傳輸速率,沒有地址方案;SPI也沒規(guī)定通信應(yīng)答機(jī)制,沒有規(guī)定流控制規(guī)則。事實(shí)上,SPI[主設(shè)備]甚至并不知道指定的[從設(shè)備]是否存在。這些通信控制都得通過SPI協(xié)議以外自行實(shí)現(xiàn)。例如,要用SPI連接一支[命令-響應(yīng)控制型]解碼芯片,則必須在SPI的基礎(chǔ)上實(shí)現(xiàn)更高級(jí)的通信協(xié)議。SPI并不關(guān)心物理接口的電氣特性,例如信號(hào)的標(biāo)準(zhǔn)電壓。在最初,大多數(shù)SPI應(yīng)用都是使用間斷性時(shí)鐘脈沖和以字節(jié)為單位傳輸數(shù)據(jù)的,但現(xiàn)在有很多變種實(shí)現(xiàn)了連續(xù)性時(shí)間脈沖和任意長(zhǎng)度的數(shù)據(jù)幀。
IIC
與SPI的單主設(shè)備不同,IIC 是多主設(shè)備的總線,IIC沒有物理的芯片選擇信號(hào)線,沒有仲裁邏輯電路,只使用兩條信號(hào)線—— ‘serial data’ (SDA) 和 ‘serial clock’ (SCL)。IIC協(xié)議規(guī)定:
第一,每一支IIC設(shè)備都有一個(gè)唯一的七位設(shè)備地址;
第二,數(shù)據(jù)幀大小為8位的字節(jié);
第三,數(shù)據(jù)(幀)中的某些數(shù)據(jù)位用于控制通信的開始、停止、方向(讀寫)和應(yīng)答機(jī)制。
IIC 數(shù)據(jù)傳輸速率有標(biāo)準(zhǔn)模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps),另外一些變種實(shí)現(xiàn)了低速模式(10 kbps)和快速+模式(1 Mbps)。
物理實(shí)現(xiàn)上,IIC 總線由兩根信號(hào)線和一根地線組成。兩根信號(hào)線都是雙向傳輸?shù)模瑓⒖枷聢D。IIC協(xié)議標(biāo)準(zhǔn)規(guī)定發(fā)起通信的設(shè)備稱為主設(shè)備,主設(shè)備發(fā)起一次通信后,其它設(shè)備均為從設(shè)備。
IIC 通信過程大概如下。首先,主設(shè)備發(fā)一個(gè)START信號(hào),這個(gè)信號(hào)就像對(duì)所有其它設(shè)備喊:請(qǐng)大家注意!然后其它設(shè)備開始監(jiān)聽總線以準(zhǔn)備接收數(shù)據(jù)。接著,主設(shè)備發(fā)送一個(gè)7位設(shè)備地址加一位的讀寫操作的數(shù)據(jù)幀。當(dāng)所設(shè)備接收數(shù)據(jù)后,比對(duì)地址自己是否目標(biāo)設(shè)備。如果比對(duì)不符,設(shè)備進(jìn)入等待狀態(tài),等待STOP信號(hào)的來臨;如果比對(duì)相符,設(shè)備會(huì)發(fā)送一個(gè)應(yīng)答信號(hào)——ACKNOWLEDGE作回應(yīng)。
當(dāng)主設(shè)備收到應(yīng)答后便開始傳送或接收數(shù)據(jù)。數(shù)據(jù)幀大小為8位,尾隨一位的應(yīng)答信號(hào)。主設(shè)備發(fā)送數(shù)據(jù),從設(shè)備應(yīng)答;相反主設(shè)備接數(shù)據(jù),主設(shè)備應(yīng)答。當(dāng)數(shù)據(jù)傳送完畢,主設(shè)備發(fā)送一個(gè)STOP信號(hào),向其它設(shè)備宣告釋放總線,其它設(shè)備回到初始狀態(tài)。
基于IIC總線的物理結(jié)構(gòu),總線上的START和STOP信號(hào)必定是唯一的。另外,IIC總線標(biāo)準(zhǔn)規(guī)定SDA線的數(shù)據(jù)轉(zhuǎn)換必須在SCL線的低電平期,在SCL線的高電平期,SDA線的上數(shù)據(jù)是穩(wěn)定的。
在物理實(shí)現(xiàn)上,SCL線和SDA線都是漏極開路(open-drain),通過上拉電阻外加一個(gè)電壓源。當(dāng)把線路接地時(shí),線路為邏輯0,當(dāng)釋放線路,線路空閑時(shí),線路為邏輯1。基于這些特性,IIC設(shè)備對(duì)總線的操作僅有“把線路接地”——輸出邏輯0。
IIC總線設(shè)計(jì)只使用了兩條線,但相當(dāng)優(yōu)雅地實(shí)現(xiàn)任意數(shù)目設(shè)備間無縫通信,堪稱完美。我們?cè)O(shè)想一下,如果有兩支設(shè)備同時(shí)向SCL線和SDA線發(fā)送信息會(huì)出現(xiàn)什么情況。
基于IIC總線的設(shè)計(jì),線路上不可能出現(xiàn)電平?jīng)_突現(xiàn)象。如果一支設(shè)備發(fā)送邏輯0,其它發(fā)送邏輯1,那么線路看到的只有邏輯0。也就是說,如果出現(xiàn)電平?jīng)_突,發(fā)送邏輯0的始終是“贏家”。
總線的物理結(jié)構(gòu)亦允許主設(shè)備在往總線寫數(shù)據(jù)的同時(shí)讀取數(shù)據(jù)。這樣,任何設(shè)備都可以檢測(cè)沖突的發(fā)生。當(dāng)兩支主設(shè)備競(jìng)爭(zhēng)總線的時(shí)候,“贏家”并不知道競(jìng)爭(zhēng)的發(fā)生,只有“輸家”發(fā)現(xiàn)了沖突——當(dāng)它寫一個(gè)邏輯1,卻讀到0時(shí)——而退出競(jìng)爭(zhēng)。
10位設(shè)備地址
任何IIC設(shè)備都有一個(gè)7位地址,理論上,現(xiàn)實(shí)中只能有127種不同的IIC設(shè)備。實(shí)際上,已有IIC的設(shè)備種類遠(yuǎn)遠(yuǎn)多于這個(gè)限制,在一條總線上出現(xiàn)相同的地址的IIC設(shè)備的概率相當(dāng)高。為了突破這個(gè)限制,很多設(shè)備使用了雙重地址——7位地址加引腳地址(external configuration pins)。IIC 標(biāo)準(zhǔn)也預(yù)知了這種限制,提出10位的地址方案。
10位的地址方案對(duì) IIC協(xié)議的影響有兩點(diǎn):
第一,地址幀為兩個(gè)字節(jié)長(zhǎng),原來的是一個(gè)字節(jié);
第二,第一個(gè)字節(jié)前五位最高有效位用作10位地址標(biāo)識(shí),約定是“11110”。
除了10位地址標(biāo)識(shí),標(biāo)準(zhǔn)還預(yù)留了一些地址碼用作其它用途,如下表:
時(shí)鐘拉伸
在 IIC 通信中,主設(shè)備決定了時(shí)鐘速度。因?yàn)闀r(shí)鐘脈沖信號(hào)是由主設(shè)備顯式發(fā)出的。但是,當(dāng)從設(shè)備沒辦法跟上主設(shè)備的速度時(shí),從設(shè)備需要一種機(jī)制來請(qǐng)求主設(shè)備慢一點(diǎn)。這種機(jī)制稱為時(shí)鐘拉伸,而基于I²C結(jié)構(gòu)的特殊性,這種機(jī)制得到實(shí)現(xiàn)。當(dāng)從設(shè)備需要降低傳輸?shù)乃俣鹊臅r(shí)候,它可以按下時(shí)鐘線,逼迫主設(shè)備進(jìn)入等待狀態(tài),直到從設(shè)備釋放時(shí)鐘線,通信才繼續(xù)。
高速模式
原理上講,使用上拉電阻來設(shè)置邏輯1會(huì)限制總線的最大傳輸速度。而速度是限制總線應(yīng)用的因素之一。這也說明為什么要引入高速模式(3.4 Mbps)。在發(fā)起一次高速模式傳輸前,主設(shè)備必須先在低速的模式下(例如快速模式)發(fā)出特定的“High Speed Master”信號(hào)。為縮短信號(hào)的周期和提高總線速度,高速模式必須使用額外的I/O緩沖區(qū)。另外,總線仲裁在高速模式下可屏蔽掉。更多的信息請(qǐng)參與總線標(biāo)準(zhǔn)文檔。
IIC vs SPI: 哪位是贏家?
我們來對(duì)比一下IIC 和 SPI的一些關(guān)鍵點(diǎn):
第一,總線拓?fù)浣Y(jié)構(gòu)/信號(hào)路由/硬件資源耗費(fèi)
IIC 只需兩根信號(hào)線,而標(biāo)準(zhǔn)SPI至少四根信號(hào),如果有多個(gè)從設(shè)備,信號(hào)需要更多。一些SPI變種雖然只使用三根線——SCLK, SS和雙向的MISO/MOSI,但SS線還是要和從設(shè)備一對(duì)一根。另外,如果SPI要實(shí)現(xiàn)多主設(shè)備結(jié)構(gòu),總線系統(tǒng)需額外的邏輯和線路。用IIC 構(gòu)建系統(tǒng)總線唯一的問題是有限的7位地址空間,但這個(gè)問題新標(biāo)準(zhǔn)已經(jīng)解決——使用10位地址。從第一點(diǎn)上看,IIC是明顯的大贏家。
第二,數(shù)據(jù)吞吐/傳輸速度
如果應(yīng)用中必須使用高速數(shù)據(jù)傳輸,那么SPI是必然的選擇。因?yàn)镾PI是全雙工,IIC 的不是。SPI沒有定義速度限制,一般的實(shí)現(xiàn)通常能達(dá)到甚至超過10 Mbps。IIC 最高的速度也就快速+模式(1 Mbps)和高速模式(3.4 Mbps),后面的模式還需要額外的I/O緩沖區(qū),還并不是總是容易實(shí)現(xiàn)的。
第三,優(yōu)雅性
IIC 常被稱更優(yōu)雅于SPI。公正的說,我們更傾向于認(rèn)為兩者同等優(yōu)雅和健壯。IIC的優(yōu)雅在于它的特色——用很輕盈的架構(gòu)實(shí)現(xiàn)了多主設(shè)備仲裁和設(shè)備路由。但是對(duì)使用的工程師來講,理解總線結(jié)構(gòu)更費(fèi)勁,而且總線的性能不高。
SPI的優(yōu)點(diǎn)在于它的結(jié)構(gòu)相當(dāng)?shù)闹庇^簡(jiǎn)單,容易實(shí)現(xiàn),并且有很好擴(kuò)展性。SPI的簡(jiǎn)單性不足稱其優(yōu)雅,因?yàn)橐肧PI搭建一個(gè)有用的通信平臺(tái),還需要在SPI之上構(gòu)建特定的通信協(xié)議軟件。也就是說要想獲得SPI特有而IIC沒有的特性——高速性能,工程師們需要付出更多的勞動(dòng)。另外,這種自定的工作是完全自由的,這也說明為什么SPI沒有官方標(biāo)準(zhǔn)。IIC和SPI都對(duì)低速設(shè)備通信提供了很好的支持,不過,SPI適合數(shù)據(jù)流應(yīng)用,而IIC更適合“字節(jié)設(shè)備”的多主設(shè)備應(yīng)用。
小結(jié)
在數(shù)字通信協(xié)議簇中,IIC和SPI常稱為“小”協(xié)議,相對(duì)Ethernet, USB, SATA, PCI-Express等傳輸速度達(dá)數(shù)百上千兆字節(jié)每秒的總線。但是,我們不能忘記的是各種總線的用途是什么。“大”協(xié)議是用于系統(tǒng)外的整個(gè)系統(tǒng)之間通信的,“小”協(xié)議是用于系統(tǒng)內(nèi)各芯片間的通信,沒有跡象表明“大”協(xié)議有必要取代“小”協(xié)議。IIC和SPI的存在和流行體現(xiàn)了“夠用就好”的哲學(xué)。回應(yīng)文首,IIC和SPI如此的流行,它是任何一位嵌入式工程師必備的工具。
推薦閱讀:
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計(jì)
- ADI電機(jī)運(yùn)動(dòng)控制解決方案 驅(qū)動(dòng)智能運(yùn)動(dòng)新時(shí)代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點(diǎn)”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺(tái)
- 中微公司成功從美國(guó)國(guó)防部中國(guó)軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標(biāo)準(zhǔn)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴(kuò)散
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國(guó)防航空
過流保護(hù)器
過熱保護(hù)
過壓保護(hù)
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器