【導讀】雪崩二極管是利用半導體結(jié)構(gòu)中載流子的碰撞電離和渡越時間兩種物理效應而產(chǎn)生負阻的固體微波器件。
雪崩二極管是利用半導體結(jié)構(gòu)中載流子的碰撞電離和渡越時間兩種物理效應而產(chǎn)生負阻的固體微波器件。
PN結(jié)有單向?qū)щ娦裕螂娮栊?,反向電阻很大?/div>
當反向電壓增大到一定數(shù)值時,反向電流突然增加。就是反向電擊穿。它分雪崩擊穿和齊納擊穿(隧道擊穿)。
雪崩擊穿是PN結(jié)反向電壓增大到一數(shù)值時,載流子倍增就像雪崩一樣,增加得多而快。
利用這個特性制作的二極管就是雪崩二極管
雪崩擊穿是在電場作用下,載流子能量增大,不斷與晶體原子相碰,使共價鍵中的電子激發(fā)形成自由電子-空穴對。新產(chǎn)生的載流子又通過碰撞產(chǎn)生自由電子-空穴對,這就是倍增效應。1生2,2生4,像雪崩一樣增加載流子。
齊納擊穿完全不同,在高的反向電壓下,PN結(jié)中存在強電場,它能夠直接破壞共價鍵將束縛電子分離來形成電子-空穴對,形成大的反向電流。齊納擊穿需要的電場強度很大!只有在雜質(zhì)濃度特別大的PN結(jié)才做得到。(雜質(zhì)大電荷密度就大)
一般的二極管摻雜濃度沒這么高,它們的電擊穿都是雪崩擊穿。齊納擊穿大多出現(xiàn)在特殊的二極管中,就是穩(wěn)壓二極管
它是在外加電壓作用下可以產(chǎn)生高頻振蕩的晶體管。產(chǎn)生高頻振蕩的工作原理是:利用雪崩擊穿對晶體注入載流子,因載流子渡越晶片需要一定的時間,所以其電流滯后于電壓,出現(xiàn)延遲時間,若適當?shù)乜刂贫稍綍r間,那么,在電流和電壓關系上就會出現(xiàn)負阻效應,從而產(chǎn)生高頻振蕩。它常被應用于微波領域的振蕩電路中。
工作原理
在材料摻雜濃度較低的PN結(jié)中,當PN結(jié)反向電壓增加時,空間電荷區(qū)中的電場隨著增強。這樣,通過空間電荷區(qū)的電子和空穴,就會在電場作用下獲得的能量增大,在晶體中運動的電子和空穴將不斷地與晶體原子又發(fā)生碰撞,當電子和空穴的能量足夠大時,通過這樣的碰撞的可使共價鍵中的電子激發(fā)形成自由電子–空穴對。新產(chǎn)生的電子和空穴也向相反的方向運動,重新獲得能量,又可通過碰撞,再產(chǎn)生電子–空穴對,這就是載流子的倍增效應。當反向電壓增大到某一數(shù)值后,載流子的倍增情況就像在陡峻的積雪山坡上發(fā)生雪崩一樣,載流子增加得多而快,這樣,反向電流劇增, PN結(jié)就發(fā)生雪崩擊穿。利用該特點可制作高反壓二極管。下圖是雪崩擊穿的示意圖。
雪崩二極管是一種負阻器件,特點是輸出功率大,但噪聲也很大。主要噪聲來自于雪崩噪聲,是由于雪崩倍增過程中產(chǎn)生電子和空穴和無規(guī)則性所引起的,其性質(zhì)和散彈噪聲類似。雪崩噪聲是雪崩二極管振蕩器的噪聲遠高于其它振蕩器的主要原因。
雪崩二極管如何幫助防止過電壓
當IGBT在高性能應用中高速接通和斷開時,總會發(fā)生過壓。例如,當關閉負載電流電路時,集電極 - 發(fā)射極電壓突然上升,達到非常高的峰值。由開關引起的過電壓會嚴重損壞甚至破壞開關晶體管。
常見的過電壓保護方法是“有源鉗位(active clamping)”。在這種情況下,雪崩二極管用作直接反饋。如果關斷導致電感負載過壓峰值,則由雪崩二極管傳導至IGBT柵極,并且IGBT重新接通。
上圖顯示了基本原理:當電壓上升時,二極管被阻斷(A)。在耗盡區(qū)中,一個自由電子觸發(fā)雪崩的瞬間,電壓突然下降到低于30V的擊穿電壓電平,雪崩二極管立刻擊穿(B)。在重新啟動之前,有時只能保持雪崩電流在短時間內(nèi)穩(wěn)定,并且電壓再次上升(C)。擊穿延遲(D)即兩次擊穿事件之間的時間,是不能預測的。
建議將具有改善噪聲性能的雪崩二極管用于有源鉗位過壓保護,因為它們能夠:
˙ 在快速上升的反向電壓下,更快擊穿
˙ 在低電流(低于~1mA)時具有更穩(wěn)定擊穿電壓,因此:
˙ 延長其它器件的壽命,例如 IGBT或Mosfet,結(jié)果:
˙ 為變頻器或電機控制器等應用節(jié)省成本,因為組件較少需要更換。
雪崩二極管的噪聲是如何產(chǎn)生的?
雪崩二極管的噪聲來自雪崩的不斷接通和斷開,即電壓峰值的不斷產(chǎn)生及其突然擊穿(見圖)。觸發(fā)雪崩擊穿有兩個先決條件:
1. 存在足夠的擊穿電壓以產(chǎn)生用于碰撞電離的臨界電場強度。
2. 存在自由電子,因而形成漏電流。
例如,1.6pA = 1.6 x 10-12A漏電流等于通過阻擋層的電子流速為每秒107電子,這意味著在統(tǒng)計上每100ns只能觸發(fā)一次雪崩。然而,由于不是每個電子都會觸發(fā)雪崩,實際上觸發(fā)時間會更長。因此,觸發(fā)雪崩擊穿的概率與泄漏電流成比例。換句話說:漏電流越大,觸發(fā)雪崩擊穿的概率越高或擊穿延遲時間越短(圖中:D)。
在兩個沖擊漏電流電子之間,二極管處的反向電壓可以顯著上升到高于擊穿電壓電平。只有當下一個沖擊電子觸發(fā)雪崩時,二極管的電壓才會突然下降到擊穿電壓水平。
如果電壓源提供足夠的電流,例如 1mA,雪崩擊穿可以通過連續(xù)的碰撞電離保持自身運行,從而產(chǎn)生穩(wěn)定的雪崩電流。
但是,如果源電流太低,例如100μA,低于擊穿電壓電平的雪崩電壓突然下降,使得二極管放電,將導致雪崩擊穿立即再次停止。這時,需要一定的時間來使二極管和線電容充電,使低源電流達到所需的電壓電平,然后下一個電子才能觸發(fā)新的雪崩。這種雪崩的不斷接通和斷開導致雪崩二極管擊穿的典型噪聲。
二極管噪聲性能的差異在圖中也可見:圖中顯示了兩個Z二極管(齊納二極管)的擊穿電壓范圍,在100μA的反向電流(IR)下測得的擊穿電壓為30V。其中一個二極管基于標準技術(shù),使用極低的漏電流,另一個則采用“低噪聲技術(shù)”。具有“低噪聲技術(shù)”的齊納二極管具有更穩(wěn)健的電壓特性,優(yōu)于僅能在短時間內(nèi)保持恒定雪崩電流的另一個二極管(C)。
威世提供采用“低噪聲技術(shù)”的Z二極管,這些新一代產(chǎn)品包括SMF、BZD27、BZG 03、BZG04、 BZG05、PLZ 和 VTVS系列,由于適度增加漏電流(IR~10nA)而明顯增加了觸發(fā)雪崩擊穿的可能性,從而降低了噪聲,并為用戶提供了在低電流(低于~1mA)時更穩(wěn)定的擊穿電壓以及快速上升反向電壓的更快擊穿。
二極管噪聲的更進一步影響因素
漏電流隨溫度增加而呈指數(shù)上升,即噪聲隨溫度升高而降低;光還可以釋放二極管耗盡區(qū)中的自由電子,從而降低噪聲水平。這意味著:四周環(huán)境越暗越冷,噪音水平越高。