基于 LCC 拓撲的 2 相輸入 300W AC-DC LED 電源
發(fā)布時間:2021-03-09 來源:意法半導(dǎo)體,Akshat JAIN, Fabrizio DI FRANCO 責(zé)任編輯:lina
【導(dǎo)讀】近年來,諧振變換器的熱度越來越高,被廣泛用于計算機服務(wù)器、電信設(shè)備、燈具和消費電子等各種應(yīng)用場景。諧振變換器可以很容易地實現(xiàn)高能效,其固有的較寬的軟開關(guān)范圍很容易實現(xiàn)高頻開關(guān),這是一個關(guān)鍵的吸引人的特性。本文著重介紹一個以半橋LCC諧振變換數(shù)字控制和同步整流為特性的300W電源。
近年來,諧振變換器的熱度越來越高,被廣泛用于計算機服務(wù)器、電信設(shè)備、燈具和消費電子等各種應(yīng)用場景。諧振變換器可以很容易地實現(xiàn)高能效,其固有的較寬的軟開關(guān)范圍很容易實現(xiàn)高頻開關(guān),這是一個關(guān)鍵的吸引人的特性。本文著重介紹一個以半橋LCC諧振變換數(shù)字控制和同步整流為特性的300W電源。
圖1所示的STEVAL-LLL009V1是一個數(shù)控300W電源。原邊組件包括PFC級和DC-DC功率級(半橋LCC諧振變換器),副邊組件包括同步整流電路和STM32F334微控制器,其中STM32F334微控制器對DC-DC功率級(半橋LCC諧振變換器)和輸出同步整流進行數(shù)字控制,而功率因數(shù)校正(PFC)級基于L6562ATD臨界模式PFC控制器。
評估套件的工作模式可以按照需要設(shè)為恒定電壓(CV)模式或恒定電流(CC)。 板載快速保護電路提供所有的必備的保護功能,并且具有很高的可靠性。在270-480V交流輸入和整個負載范圍內(nèi),對評估套件進行了性能測評,試驗結(jié)果證明,電能質(zhì)量參數(shù)在IEC 61000-3-2通用交流電源諧波標準的可接受范圍內(nèi)。
前言
本文提出的解決方案采用數(shù)字變換控制方法,而不是基于模擬IC的標準設(shè)計。數(shù)控方法的主要優(yōu)點是設(shè)置靈活,可以在任何給定條件下即時調(diào)整參數(shù)和工作點,無需更改任何硬件,而模擬控制只能在特定范圍內(nèi)調(diào)整。數(shù)字控制方法只用一顆芯片就能實現(xiàn)調(diào)光方法(模擬或數(shù)字)、調(diào)光控制(0-10V,無線通信)、調(diào)光分辨率、溫度監(jiān)控、各種保護、通信連接等高級功能,因而系統(tǒng)成本更劃算,實現(xiàn)起來也比模擬方法更容易。此外,在噪聲較高的工況下,數(shù)控方法可保證電源具有更高的穩(wěn)定性:數(shù)控電源不易受元器件公差、溫度變化、電壓漂移等因素的影響。
圖 1: STEVAL-LLL009V1 評估套件
系統(tǒng)概述
STEVAL-LLL009V1評估套件有恒定電壓(CV)和恒定電流(CC)兩種模式,恒壓模式(CV)可將270V-480V交流電輸入轉(zhuǎn)為48 V恒定電壓、最大電流6.25 A的直流電輸出;恒流模式(CC)可以輸出36V-48V的6.25 A直流電流。通過撥動主電源板上的開關(guān)SW1,可以將評估套件設(shè)為CV模式或CC模式。DC-DC功率級叫做原邊電源層,而微控制器級叫做副邊電源層,微控制器向電隔離半橋柵極驅(qū)動器STGAP2DM發(fā)送控制信號,驅(qū)動DC-DC功率級MOSFET開關(guān)管。
圖2是STEVAL-LLL009V1評估套件的框圖,該評估套件嵌入了原副邊需要的拓撲電路和元器件。
評估板提供一個0-10V的輸入,用于控制LED的亮度。僅當(dāng)評估套件在恒流(CC)模式下運行時,調(diào)光控制0-10V輸入才適用。STEVAL-LLL009V1評估套件實現(xiàn)了模擬調(diào)光方法,電流分辨率為1%。
評估板上還插接了一個有隔離放大器的子板,用于檢測PFC的輸出電壓,該輸出電壓也是DC-DC功率級的輸入電壓。PFC級基于MDmesh
TM K5功率MOSFET;為實現(xiàn)高能效,LCC變換器的半橋采用MDmesh TM DK5功率MOSFET。副邊同步整流(SR)電路采用STripFETTM F7功率MOSFET,以減少通態(tài)損耗。
評估套件配備了完善的安全保護功能,例如,開路保護、短路保護、諧振電流保護、DC-DC功率級輸入欠壓保護和過壓保護。
基于VIPer267KDTR的離線反激變換器向原副邊電路供電,包括控制板、柵極驅(qū)動器IC和信號調(diào)理電路。
實驗結(jié)果表明,在寬輸入電壓和寬負載條件下,評估板取得了較高的電源能效,功率因數(shù)接近一,較低的THD%失真率,這歸功于意法半導(dǎo)體的功率器件的出色性能,以及使用STM32F334 32位微控制器實現(xiàn)的控制策略。
圖 2:STEVAL-LLL009V1 評估套件框圖
諧振變換器
DC-DC功率級將PFC輸出電壓變?yōu)樗璧妮敵鲭妷骸?DC-DC功率變換級有多種拓撲可用,例如,LLC諧振變換器。每種拓撲都有其各自的優(yōu)缺點。充電器和LED照明之類的應(yīng)用可能要求電隔離的DC-DC功率級處理較寬的輸入或輸出電壓。 考慮到這些要求,在STEVAL-LLL009V1的DC-DC功率級中實現(xiàn)了半橋LCC諧振拓撲,如圖3所示。
圖 3:具有同步整流功能的半橋 LCC 諧振變換級
在STEVAL-LLL009V1中,并聯(lián)電容器Cp連接到變壓器的副邊,因此,同步整流的寄生電容和變壓器的漏感成為諧振回路的一部分。
PFC輸出電壓為大容量的Bulk電容器充電,以生成穩(wěn)定的DCBUS電流。半橋配置MOSFET開關(guān)在GND和DC-BUS之間產(chǎn)生一個方波電壓波形, 并施加到由電容器Cr、電容器Cp(位
于副邊)、電感器Lr和隔離變壓器組成的LCC諧振回路。
以50%的PWM占空比和適當(dāng)?shù)乃绤^(qū)時間驅(qū)動LCC諧振變換器的半橋高壓MOSFET 開關(guān)。因為近似正弦諧振的儲能電流始終滯后于電壓波形(電感區(qū)域),所以MOSFET輸出電容在
下一次導(dǎo)通之前的死區(qū)時間內(nèi)有時間放電,并實現(xiàn)零電壓開關(guān)(ZVS)操作,如圖4所示。PWM開關(guān)頻率控制器用于調(diào)節(jié)諧振回路的電壓升高幅度,并將變換器的電壓保持在電感區(qū)域內(nèi),使開關(guān)管在整個工作范圍內(nèi)保持ZVS操作,并減少開關(guān)損耗。
圖 4:在 100%負載時 HB-LCC 級波形
表 1:LCC 與 LLC 諧振變換器對比
我們用基本諧波分析(FHA)法分析了評估套件半橋LCC諧振變換器的增益。
根據(jù)使用FHA方法得出的增益計算公式以及為STEVALLLL009V1評估套件半橋LCC諧振轉(zhuǎn)換器選擇的LCC參數(shù),我們得出增益與歸一化頻率的關(guān)系曲線,如圖5所示。
圖 5:HB LCC 變換器-增益與歸一化頻率
同步整流(SR)
在圖3所示的變壓器副邊,輸入電壓波形由全橋配置的同步整流器整流,并由輸出電容器濾除干擾信號,使波形平滑。 同步整流級由STM32F334微控制器進行數(shù)字控制。
驅(qū)動同步整流MOSFET開關(guān)管需要檢測同步整流(SR)端點電壓(VDS_SR1 和 VDS_SR2)。下面討論MOSFET VDS(漏源電壓)的檢測和控制算法。
漏源電壓檢測網(wǎng)絡(luò)由快速二極管和上拉電阻組成,上拉電阻連接微控制器(MCU)的電源電壓,如圖6所示。當(dāng)SRMOSFET漏極電壓高于MCU Vcc時,給二極管施加反向偏壓,檢測電壓上拉至Vcc。 當(dāng)漏極電壓低于Vcc時,給二極管施加正向偏壓,檢測電壓等于該電壓與正向?qū)ǖ亩O管的壓降之和。上拉電阻限制加正偏壓期間的電流。
圖 6:同步整流 VDS檢測方法
首先,同步整流MOSFET的體二極管開始導(dǎo)通,VDS檢測電路測量到VDS漏源電壓值,如果漏源電壓(VDS)低于設(shè)定閾值(通過MCU DAC外設(shè)設(shè)置的Vthreshold_ON – OFF),比較器輸出(下降沿)觸發(fā)MCU TIMER外設(shè)的不可重復(fù)觸發(fā)單脈沖模式,如圖7所示。MCU TIMER外設(shè)向相應(yīng)的同步整流柵極驅(qū)動器發(fā)送最小持續(xù)時間是TON min的脈沖信號。
當(dāng)漏源電壓(VDS)高于設(shè)定閾值(通過MCU DAC外設(shè)設(shè)置的Vthreshold_ON – OFF)時,比較器輸出(上升沿)重置MCU TIMER外設(shè),并停止向相應(yīng)的同步整流柵極驅(qū)動器發(fā)送脈沖,如圖所示。 圖7。
MCU持續(xù)監(jiān)視DC-DC功率級(HB-LCC)頻率和輸出電流。如果頻率高于設(shè)置閾值及滯后值或者輸出電流低于設(shè)置閾值及滯后值,則微控制器(MCU)關(guān)閉同步整流級柵極驅(qū)動器,在此階段,MOSFET的體二極管進行整流。當(dāng)頻率低于設(shè)置閾值及滯后值或者輸出電流高于設(shè)置閾值及滯后值時,則微控制器(MCU)開啟同步整流級柵極驅(qū)動器。
根據(jù)DC-DC功率級(HB-LCC)的工作頻率,可在MCU中的查找表中調(diào)整閾值(Vthreshold_ON – OFF)。
圖 7:同步整流數(shù)字控制算法
實驗結(jié)果
我們計算了STEVAL-LLL009V1在不同負載下的總能效、功率因數(shù)(PF)和總諧波失真(THD)。當(dāng)負載為100%時,能效高于93.5%。圖8、9、10和11分別描述了評估套件恒壓(CV)和恒
流(CC)模式的性能。
圖 8:恒壓配置:在不同負載下輸入電壓與能效的關(guān)系
圖 9:恒壓配置:在不同負載下輸入電壓與功率因數(shù)的關(guān)系
圖 10:恒壓配置:在不同負載下輸入電壓與總諧波失真的關(guān)系
圖 11:恒流配置:在不同 LED 壓降下輸入電壓與能效的關(guān)系
結(jié)論
本文提出的數(shù)控電源在恒壓(CV)和恒流(CC)兩種模式下都能提供300W的輸出功率。實驗結(jié)果表明,在寬輸入電壓和寬負載條件下,評估板取得了較高的電源能效,功率因數(shù)接近一, THD%失真率較低,這歸功于意法半導(dǎo)體的功率器件的出色性能,以及使用STM32F334 32位微控制器實現(xiàn)的控制策略。
(來源:意法半導(dǎo)體,作者:Akshat JAIN, Fabrizio DI FRANCO)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進行侵刪。
特別推薦
- 授權(quán)代理商貿(mào)澤電子供應(yīng)Same Sky多樣化電子元器件
- 使用合適的窗口電壓監(jiān)控器優(yōu)化系統(tǒng)設(shè)計
- ADI電機運動控制解決方案 驅(qū)動智能運動新時代
- 倍福推出采用 TwinSAFE SC 技術(shù)的 EtherCAT 端子模塊 EL3453-0090
- TDK推出新的X系列環(huán)保型SMD壓敏電阻
- Vishay 推出新款采用0102、0204和 0207封裝的精密薄膜MELF電阻
- Microchip推出新款交鑰匙電容式觸摸控制器產(chǎn)品 MTCH2120
技術(shù)文章更多>>
- 更高精度、更低噪音 GMCC美芝電子膨脹閥以創(chuàng)新?lián)屨夹袠I(yè)“制高點”
- 本立租完成近億元估值Pre-A輪融資,打造AI賦能的租賃服務(wù)平臺
- 中微公司成功從美國國防部中國軍事企業(yè)清單中移除
- 華邦電子白皮書:滿足歐盟無線電設(shè)備指令(RED)信息安全標準
- 功率器件熱設(shè)計基礎(chǔ)(九)——功率半導(dǎo)體模塊的熱擴散
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
共模電感
固態(tài)盤
固體繼電器
光傳感器
光電池
光電傳感器
光電二極管
光電開關(guān)
光電模塊
光電耦合器
光電器件
光電顯示
光繼電器
光控可控硅
光敏電阻
光敏器件
光敏三極管
光收發(fā)器
光通訊器件
光纖連接器
軌道交通
國防航空
過流保護器
過熱保護
過壓保護
焊接設(shè)備
焊錫焊膏
恒溫振蕩器
恒壓變壓器
恒壓穩(wěn)壓器